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Abstract

Consensus dynamics is one of the most popular multi-agent dynamical
systems. It shows up in socio-economic contexts as a model for consensus
formation in a society of individuals. In the engineering world, it has been
considered as a basic algorithm to be employed in networks of agents
(sensors, vehicles, etc.) for efficient distributive computation of global
functions. In this survey we review the basic theory of consensus dynamics
presenting a number of classical examples. Particular emphasis is devoted
to random consensus dynamics and to models considering the presence of
stubborn agents in the network.

1 Introduction

Multi-agent systems constitute one of the fundamental paradigms of the science
and technology of present century [12, 37, 41, 42]. The main idea is that of
creating complex dynamical evolutions from the interactions of many simple
units. Indeed such collective behaviors are quite evident in biological and social
systems and were indeed considered in earlier times [45]. More recently, the
digital revolution and the miniaturization in electronics have made possible the
creation of man-made complex architectures of interconnected simple devices
(computers, sensors, cameras). Moreover, the creation of internet has opened
totally new form of social end economic aggregation. This has strongly pushed
towards a systematic and deep study of multi-agent dynamical systems. Math-
ematically they typically consist of a graph where each node possesses a state
variable; states are coupled at the dynamical level through dependences deter-
mined by the edges in the graph. One of the challenging problem in the field of
multi-agent systems, is to analyze the merging of complex collective phenomena
from the interactions of the units which are typically quite simple. Complex-
ity is typically the outcome of the topology and the nature of interconnections
which are often of stochastic type. From the applicative point of view such dy-
namical systems can represent algorithms on some infrastructure network (e.g
sensor network) or rather be a model for biological or socio-economic behaviors.
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Consensus dynamics (also known as average dynamics) [44, 4, 7, 35, 39] is one
of the most popular and simplest multi-agent dynamics. One convenient way
to introduce it is with the language of social sciences. Imagine that a number
of independent units possess an information represented by a real number, for
instance such number can represent an opinion on a given fact. Units interact
and change their opinion by averaging with the opinions of other units. Under
certain assumptions this will lead the all community to converge to a consensus
opinion which takes into consideration all the initial opinion of the agents. In
social sciences, empiric evidences [26, 46] have shown how such aggregate opinion
may give avery good estimation of unknown quantities: such phenomenon has
been proposed in the literature as wisdom of crowds [43].

Below, we present a brief outline of the content of this survey paper. In
Chapter 2, we formally present consensus dynamical systems based on the evo-
lution of a stochastic matrix . We recall basic notions of the Perron-Frobenius
theory and discuss conditions for convergence and for the estimation of its speed.
Chapter 3 is devoted to the presentation of some basic examples and we inves-
tigate the scaling of the convergence time as a function of the number of node
which is a fundamental index in the applications. In Chapter 4 we deepen our
analysis focusing on the important family of time-reversible stochastic matri-
ces. We present the classical Cheeger bound which relates the convergence time
to the geometry of the underlying graph. Chapter 5 considers asynchronous
random consensus dynamics presenting some key examples (e.g. gossip mod-
els) and the basic elements of the mean square theory to study consensus in a
probabilistic sense. Chapter 6 contains some more advanced topics. Here we
deal with consensus dynamics in the presence of stubborn agents never changing
their state. Analysis of such systems naturally leads to study electrical networks
and they classical relation with time-reversible matrices. We conclude present-
ing a result which studies the relation between polarization of the opinions in
the social network and the geometry of the underlying graph.

Literature on consensus has witnessed an exponential growth in the last
decade. This survey paper does not pretend to cover all the fundamental aspects
of consensus. Our choice has privileged topics for which a reasonably complete
mathematical theory is available. Important topics not included in this survey
are time-varying dynamics [35], second order models [40, 11, 14] and bounded
confidence models.[32, 16].

1.1 Notation

All notation conventions will be recalled when introduced in the paper. For
the reader’s convenience, we here gather some of the most used notation. We
will typically consider vector spaces of type RV where V is a finite set so that
vector components are indicized by v ∈ V. The symbol 1 ∈ RV always denote
the vector whose components are all equal to 1. ev ∈ RV is the vector with all
components equal to 0 except the v-th component which is equal to 1. Given a
real matrix A, the adjoint matrix will be denoted by A∗. If V is a finite set, |V|
denotes its cardinality.
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2 Consensus dynamics, graphs and stochastic
matrices

Mathematically, consensus dynamics are special linear dynamical systems of
type

x(t+ 1) = Px(t) (1)

where x(t) ∈ RV and P ∈ RV×V is a stochastic matrix (e.g. a matrix with
non-negative elements such that every row sums to 1). V represents the finite
set of units (agents) in the network and x(t)v is to be interpreted has the state
(opinion) of agent v at time t. Typically, we put N := |V|. Update equation
(1) implies that state of agents at time t + 1 are convex combinations of the
components of x(t): this motivates the term averaging dynamics.

The network structure is hidden in the non-zero pattern of P . Indeed we
can associate to P a graph: GP = (V, EP ) where V is the set of nodes and where
the set of edges is given by EP := {(u, v) ∈ V × V | Puv > 0}. Elements in EP
represent the communication edges among the units; specifically, in our setting,
the existence of the edge (u, v) has to be interpreted in the sense that unit u has
access to the state of unit v (or, if we prefer, that v can transmit information
to u). Denote by 1 ∈ RV the all 1’s vector. Notice that P1 = 1: this shows
that once the states of units are at consensus, they will no longer change. The
crucial point to understand is if dynamics will always converge to a consensus
point.

Remarkably, some of the key properties of P responsible for the transient and
asymptotic behavior of the linear system (1) are determined by the connectivity
properties of the underlying graph GP . We recall that, given two vertices u, v ∈
V, a path (of length l) from u to v in GP is any sequence of vertices u =
u1, u2, . . . , ul+1 = v such that (ui, ui+1) ∈ EP for every i = 1, . . . , s. GP is said
to be strongly connected if for any pair of vertices u 6= v in V there is a path in
GP connecting u to v. The period of a node u is defined as the greatest common
divisor of the length of all closed paths from u to u. In strongly connected graph
all nodes have the same period, and the graph is called aperiodic if such a period
is 1. A stochastic matrix P is said to be irreducible if GP is strongly connected,
and primitive if GP is strongly connected and aperiodic. The following classical
result holds true [27]:

Theorem 1. (Perron-Frobenius) Assume that P ∈ RV×V is a primitive
stochastic matrix. Then,

1. 1 is an algebraically simple eigenvalue of P .

2. There exists a (unique) probability vector π ∈ RV (πv > 0 for all v and∑
v πv = 1) which is a left eigenvector for P , namely π∗P = π∗.

3. All the remaining eigenvalues of P are of modulus strictly less than 1.

A straightforward consequence of this result is that P t → 1π∗ for t→ +∞.
This yields

lim
t→+∞

x(t) = lim
t→+∞

P tx(0) = 1(π∗x(0)) (2)
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In other terms dynamics leads asymptotically to a consensus: all agents’ state
converging to the common value π∗x(0), called consensus point which is a convex
combination of the initial states with weights given by the invariant probability
components.

If π is the uniform vector (i.e. πi = |V|−1 for all i), the common asymptotic
value is simply the arithmetic mean of the initial states In this case all agents
equally contribute to the final common state (we often refer to this case as aver-
age consensus). This uniformity condition amounts to assume that 1∗P = 1∗,
namely that also columns of P sum to 1. Such matrices are called doubly
stochastic, a sufficient condition for this being that P is symmetric. In many
applications this uniformity condition is necessary and is enforced in the model
for instance assuming that P is symmetric. Indeed, the distributed computation
of the arithmetic mean is an important step to solve estimation problems for
sensor networks [47]. As a specific example consider the situation where there
are N sensor deployed in a certain area and each of them makes a noisy mea-
surement of a physical quantity x. Let yv = x+ωv be the measure obtained by
sensor v, where ωv is a zero mean Gaussian noise. It is well known that if noises
are independent and identically distributed, the optimal mean square estimator
of the quantity x given the entire set of measurements {yv} is exactly given by
x̂ = N−1

∑
v yv. The use of consensus in more sophisticated estimation prob-

lems where the quantity to be estimate is time-varying or where sensors may
have different performances, have been considered in the literature [8, 13, 21].
Other fields of application is in computer load balancing [36], and in the con-
trol of cooperative autonomous vehicles [23, 29]. Finally, consensus dynamics
in socio-economic settings have appeared in [28, 30, 1, 2].

2.1 The rate of convergence

Basic linear algebra allows to study the rate of convergence to consensus: it will
be clearly dictated by the largest in modulo among the eigenvalues of P except
1; precisely,

Proposition 2. Let P ∈ RV×V be a primitive stochastic matrix. Consider all
its eigenvalues µi but 1 and put ρ2 = max{|µi| < 1}. Then, for every ε > 0
there exists a constant Cε such that

||(P t − 1π∗)x0||2 ≤ Cε(ρ2 + ε)t||x0||2 for all t . (3)

The parameter ρ2, introduced in the statement of the proposition above, is
also called the second eigenvalue of P , and the difference 1− ρ2 the spectral gap
of P . The above result essentially says that convergence to consensus happens
exponentially fast as ρt2; this is not exactly true because of the ε > 0 we have
to fix, but since ε can be chosen arbitrarily small, morally, this is true. The ε is
needed because of the possibility that the algebraic multiplicity relative to the
second eigenvalue is strictly larger than the geometric multiplicity.

Stochastic matrices owe their name to their use in probability. Indeed, given
a stochastic matrix P ∈ RV×V , the term Pvw can be interpreted as the probabil-
ity of making a transition from state v to state w: you can imagine to be sitting
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at state v and to walk along one of the available outgoing edges from v accord-
ing to the various probabilities Pvw. In this way you construct what is called
a random walk on the graph G. In this probabilistic setting, it is interesting to
consider the dual dynamics induced by P . Indeed, if ζ ∈ RV is a probability
vector where ζv indicates the probability that at the initial instant the state
is equal to v, then (ζ∗P )v indicates the probability of finding the process in
state v at the next time. Therefore, ζ∗P t represent the marginal probability
distribution of the random walk at time t. Theorem 1 establishes that if P is
primitive such marginals converge to the probability π disregarding of the initial
probability vector ζ.

An important class of stochastic matrices, particularly used in applications,
are the time-reversible stochastic matrices. They are defined through a sym-
metric non-negative valued matrix C ∈ RV×V (called conductance matrix) such
that Cv =

∑
v′ Cvv′ > 0 for all v ∈ V, by putting

Pvv′ =
Cvv′

Cv
(4)

It is immediate to check that πv = Cv/
∑
v′ Cv′ is an invariant probability for

P . If P is primitive this is the unique invariant probability.
In order to present a special important example, we first review few concepts

from graph theory. Consider a strongly connected graph G = (V, E). The
adjacency matrix of G is a square matrix AG ∈ {0, 1}V×V such that (u, v) ∈ E
iff (AG)uv = 1. G is said to be symmetric if AG is symmetric (e.g. (u, v) ∈ E iff
(v, u) ∈ E). The time-reversible stochastic matrix P induced by the conductance
matrix AG is called the simple random walk (SRW) on G. Notice that if (u, v) ∈
E , Puv = d−1

u where du =
∑
v(AG)uv is the degree of node u. Notice that

πv = dv/|E|. The corresponding random walk thus put uniform probability on
all the edges outgoing any given node in the graph. Notice that since GP = G, P
is irreducible. If P is also primitive, than, we have convergence to the consensus
point

π∗x(0) =

∑
v dvx(0)v
|E|

Each node contributes with its initial state to this consensus with a weight which
is proportional to the degree of the node. Primitivity is not an important issue
in general since the SRW can always be modified adding some weight on the
diagonal terms by considering the so called lazy SRW, formally defined as

Pλ = (1− λ)P + λI

where λ ∈ (0, 1). Pλ has the same invariant probability than P and is always
primitive. A quite popular choice in the literature is to pick λ = 1/2. This has
the advantage that, in case the eigenvalues of P are real in [−1, 1] (this happens
for instance in the symmetric case), then P1/2 has all positive eigenvalues.

Notice how the SRW P is in general not symmetric, and neither doubly
stochastic, in spite of the symmetricity of the underlying graph. Indeed, it is
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immediate to verify that P is symmetric if and only if G is d-regular which is
when all nodes have the same degree d. In applications where symmetricity is
a requirement, one can consider a variation of the SRW known as Metropolis
random walk. It is formally defined by putting, for every (u, v) ∈ E with u 6= v

Puv = min

{
1

du
,

1

dv

}
and adjusting accordingly the weights on the diagonal part of the matrix to
enforce stochasticity of the matrix.

The SRW as defined above, actually works fine on any graph, not necessarily
symmetric: the degree du is more precisely the out-degree of node u, namely the
number of outgoing edges from u. A remarkable difference with respect to the
symmetric case is that, in general, there is no simple expression for the invariant
probability π.

A key fact about time-reversible matrices is the fact that they are diag-
onalizable as discussed below. Let P ∈ RV×V be a primitive time-reversible
stochastic matrix and let π ∈ RV be its invariant probability measure. Consider

Dπ the diagonal matrix such that (Dπ)vv = πv and define A = D
1/2
π PD

−1/2
π .

Time-reversibility implies that A is symmetric. Let φj ’s, for j = 1, . . . , n, be an
orthonormal basis of eigenvectors for A with correspondent real eigenvalues µj .
Order them in such a way that 1 = µ1 > µ2 ≥ · · · ≥ µN . It is immediate to
check that π1/2 is indeed an eigenvector with eigenvalue 1. Therefore, we will
assume that φ1 = π1/2. Using the usual orthonormal splitting expression for a
symmetric matrix we can write

At = π1/2(π1/2)
∗

+
∑
j≥2

µtjφjφ
∗
j ,

from which we can derive the following useful representation for P t

P t = 1π∗ +D−1/2
π

∑
j≥2

µtjφjφ
∗
jD

1/2
π .

From this expression, straightforward steps allow to obtain the following esti-
mation

||P tx(0)− 1π∗x(0)||2 ≤
maxv π

1/2
v

minv π
1/2
v

||x(0)||2ρt2 ∀t ∈ N, (5)

where in this case ρ2 = max{µ2,−µN}. In the special case when P is symmetric,
the first term in the right hand side of (5) is equal to 1 and the estimation takes
a particularly simple form, to be compared with the general estimation (3).

3 Examples and large scale analysis

In this chapter we present a number of classical examples based on families of
graphs with larger and larger number of nodes N . In this setting, particularly
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relevant is to understand the behavior of the second eigenvalue ρ2 as a function
of N . Typically, one consider ε > 0 fixed and solves the equation ρt2 = ε. The
solution τ = (ln ρ−1

2 )−1 ln ε−1 will be called the convergence time: it essentially
represents the time needed to shrink of a factor ε the distance to consensus.
Dependence of ρ2 on N will also yield that τ will be a function of N . In the
sequel we will investigate such dependence for SRW’s on certain classical families
of graphs.

Example 1 (SRW on a Complete graph). Consider the complete graph on the
set V: KV := (V,V × V) (also self loops are present). The SRW on KV is
simply given by P = N−111∗ where N = |V|. Clearly, π = N−11. Eigenvalues
of P are 1 with multiplicity 1 and 0 with multiplicity N − 1. Therefore, ρ2 = 0.
Consensus in this case is achieved in just one step: x(t) = N−111∗x(0) for all
t ≥ 1.

Example 2 (SRW on circulant graphs). Circulant graphs are graphs having the
node set equal to the cyclic group ZN = {0, 1, . . . , N − 1} and the set of edges
invariant by translation. More precisely, the graph G = (ZN , E) is circulant iff

(u, v) ∈ E , ⇒ (u+ s, v + s) ∈ E , ∀s

(where sum in the formula above, has to be interpreted in mod N sense). The
corresponding adjacency matrix AG is also called circulant: it possesses the prop-
erty that its rows can be obtained from the first one, simply, by cyclic permu-
tations: (AG)uv = (AG)0(v−u). Let d =

∑
u(AG)0u. Clearly, each node u has

d outgoing and d incoming arcs. As a consequence P = d−1AG is a doubly
stochastic matrix representing the SRW on G (even if G may as well be a non
symmetric graph). Spectral analysis of circulant matrices turns out to be very
simple using Fourier analysis. Indeed, if we consider θ the first row of P , eigen-
values are given by

λk =

N−1∑
`=0

θ`e
i 2πklN , k = 0, 1, . . . , N − 1

with corresponding eigenvectors

φk =
[
1, ei

2πk
N , . . . , ei

2πk(N−1)
n

]∗
.

As a special case consider the symmetric cycle graph CN which is the circu-
lant graph with N nodes whose adjacency matrix ACN has as first row θ =
(0, 1, 0 . . . , 0, 1) (node 0 is connected to 1 and to N − 1). The corresponding
SRW is given by 2−1ACN . Eigenvalues can be computed through the general
formula above

λk =

n−1∑
`=0

θ`e
i 2πkln =

ei
2πk
N + ei

−2πk
N

2
= cos

2πk

N
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If N is even, we have that −1 is an eigenvalue: indeed in this case, P is not
primitive (all nodes have period equal to 2). To avoid this type of problems, it is
always convenient to consider the lazy SRW version P1/2 = 1/2I+ 1/2P having
eigenvalues

1

2
(1 + λk) =

1

2
+

1

2
cos

2πk

N
.

Therefore,

ρ2 =
1

2
+

1

2
cos

2π

N
= 1− π2 1

N2
+ o(N−2) for N → +∞ (6)

Therefore the corresponding convergence time is given by

τ = (ln ρ−1
2 )−1 ln ε−1 � N2 for N → +∞

Example 3 (SRW on toroidal grids). Given two loopless graphs G1 = (V1, E1)
and G2 = (V2, E2) one can consider the product graph G1 × G2 = (V1 × V2, E)
characterized by the adjacency matrix AG1×G2 which is defined as

(AG1×G2)(u1,u2)(v1,v2) := (AG1)u1,v11{u2=v2} + (AG2)u2,v21{u1=v1}

A straightforward but useful property is that if AG1x1 = λ1x1 and AG2x2 = λ2x2,
then, AG1×G2x1x

∗
2 = (λ1 +λ2)x1x

∗
2. This implies that the eigenvalues of AG1×G2

can be obtained as sum of one eigenvalue of AG1 and one of AG2 . It is immediate
to check that if G1 and G2 are symmetric, also G1 × G2 is symmetric. Moreover
if G1 and G2 are, respectively, d1-regular and d2-regular, then G1×G2 is d1 +d2-
regular. Considering the cycle graph Cn, we have that C2

n = Cn × Cn is the
so-called toroidal 2-grid, and, more generally, Cdn, the product of d copies of Cn,
represents the toroidal d-grid. Cdn is a symmetric 2d-regular graph and the SRW
on Cdn is given by P = (2d)−1AG1×G2×···×Gd . Eigenvalues of P1/2 = 1/2(I + P )
are thus

1

2
+

1

2d

d∑
j=1

cos
2πkj
n

, (k1, . . . , kd) ∈ Zdn .

The second eigenvalue is thus given by

ρ2 =
1

2
+

1

2d

(
d− 1 + cos

2π

n

)
= 1− π2

dn2
+ o(n−2)

Apparently nothing has changed with respect to the cycle (see formula (6). How-
ever notice that, in the toroidal d-grid the number of nodes is N = nd. This
yields

τ � N2/d for N → +∞

This shows that the convergence time exhibits a slower growth in N as the di-
mension d of the grid increases: this is intuitive since the increase in d deter-
mines a better connectivity of the graph and a consequently faster diffusion of
information.
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We complete this chapter with a general comment. In all those situations
where we have a sequence of stochastic matrices as in the examples above with
second eigenvalues satisfying 1 − ρ2 � α(N) for N → +∞ where α(N) is
infinitesimal in N , then,

τ = (ln ρ−1
2 )−1 ln ε−1 � α(N)−1 � (1− ρ2)−1 , N → +∞

Namely, the inverse of the spectral gap dictates the scaling in N of the conver-
gence time.

4 The spectral gap of time-reversible matrices

In the previous chapter we have presented a number of classical examples for
which it is possible to explicitly compute the spectral gap and thus the conver-
gence time. In general, however, there is not a closed formula for such index.
Indeed, computation of eigenvalues is a formidable task for large scale matrices
even from a numerical point of view. It is therefore important to develop tools
for efficient estimation of the spectral gap. To this aim, in this chapter, we
deepen our analysis of time-reversible chains and we review a basic technique to
estimate the second eigenvalue on the basis of the geometry of the underlying
graph.

Consider a primitive time-reversible stochastic matrix P associated with a
conductance matrix C. Compactly we can write P = D−1

C1C where DC1 is the
diagonal matrix such that (DC1)uu = (C1)u. The invariant probability is given
by π = (1 ∗ C1)−1C1. A simple verification shows that P and π satisfy the
relation

πuPuv = πvPvu (7)

for every pair of nodes u and v. (7) is known as the detailed balance condition
and is not difficult to see that it is actually a sufficient condition for time-
reversibility. In the probabilistic framework, considering P as the transition
matrix of a random walk Xt having initial probability vector π, the left and
right terms of (7) can be interpreted, respectively as P(Xt = u,Xt+1 = v) and
P(Xt = v,Xt+1 = u). This motivates the name time-reversible.

To investigate the spectral properties of P , it is convenient to introduce
the so-called Laplacian of P defined as L(P ) = I − P . Clearly, L(P ) has
all real non-negative eigenvalues and 0 has multiplicity 1. Define the inner
product 〈x, y〉π :=< x,Dπy >=

∑
v πvxvyv. The following standard linear

algebra results hold (see for instance [33]).

Proposition 3. Assume that P is a time-reversible stochastic matrix with in-
variant probability measure π. For every x ∈ RV , it holds

〈x, L(P )x〉π =
1

2

∑
v,w

Pvwπv(xv − xw)2. (8)
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Proposition 4. Assume that P is a time-reversible stochastic matrix with in-
variant probability measure π. Let λ2 be the second smallest eigenvalue of L(P ).
It holds

λ2 = min
x6=0,〈x,1〉π=0

〈x, L(P )x〉π
〈x, x〉π

. (9)

A useful technique, based on the above results, to upper bound the spectral
gap of a time-reversible stochastic matrix P is through the so called bottleneck
ratio, a sort of index measuring how well the “flow” represented by the ma-
trix is spreading along the underlying graph. Suppose π is the usual invariant
probability measure of P , and for every S ⊂ V, define π(S) =

∑
v∈S πv and

Q(S, Sc) =
∑

v∈S,w/∈S

πvPvw .

Then, we define

Φ(S) :=
Q(S, Sc)

π(S)

and the bottleneck ratio of P as

Φ∗ := min
S:π(S)≤ 1

2

Φ(S).

In the probabilistic interpretation Q(S, Sc) represents the probability that the
random walk at the invariant regime π is in S at time t, and outside of S at the
next time t+ 1. Φ(S) is instead the probability that the random walk is outside
of S at time t+1 conditioned to be in S at time t. We have the following result:

Proposition 5 (Cheeger bound). Let µ2 be the second largest eigenvalue of a
time-reversible matrix P , and let Φ∗ be the bottleneck ratio of P . Then,

1− µ2 ≤ 2Φ∗. (10)

Proof Given S ⊆ V , consider the vector φ ∈ RV defined by φv = π(Sc) if
v ∈ S, and φv = −π(S) if v ∈ Sc. Then, from Proposition 3 and the detailed
balance condition (7), it follows that

〈φ,L(P )φ〉π = 1
2

∑
v,w πvPvw(φv − φw)2

=
∑
v∈S,w 6∈S πvPvw(φv − φw)2

=
∑
v∈S,w 6∈S πvPvw(π(S) + π(Sc))2

=
∑
v∈S,w 6∈S πvPvw = Q(S, Sc) .

On the other hand,

〈φ, φ〉π =
∑
v

πvφ
2
v =

∑
v∈S

πvπ(Sc)2 +
∑
w 6∈S

πwπ(S)2 = π(S)π(Sc).

From the variational characterization of Proposition 4, and assuming π(S) ≤ 1/2
we thus conclude

1− µ2 = λ2 ≤ 〈φ,L(P )φ〉π
〈φ,φ〉π = Q(S,Sc)

π(S)π(Sc) ≤ 2Φ(S).
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Since this inequality holds for all S such that π(S) ≤ 1
2 , the upper bound is

proved.

Notice that, since ρ2 ≥ µ2, we also have a bound for the spectral gap

1− ρ2 ≤ 2Φ∗ .

In the case when P is the SRW on a symmetric graph G = (V, E), the
bottleneck ratio takes a peculiar form which is convenient to work out:

Φ(S) =

∑
v∈S,w∈Sc

dv
|E|

(AG)vw
1

dv∑
v∈S

dv
|E|

=

∑
v∈S,w∈Sc

(AG)vw∑
v∈S

dv
(11)

This says that Φ(S) equals the fraction of those edges which start inside S and
end outside S. The corresponding φ∗ in this case is also called the bottleneck
of the graph G.

Example 4 (Graphs with a bottleneck). Consider two symmetric strongly con-
nected graphs G1 = (V1, E1) and G2 = (V2, E2) with |V1| = |V2| = n. Fix two
points v1 ∈ V1 and v2 ∈ V2 and consider the graph

G = (V1 ∪ V2, E1 ∪ E2 ∪ {(v1, v2), (v2, v1)}) .

If we take S = V1, we obtain

Φ(S) =
1

|E1|+ 1

Taking into consideration that (since G1 is connected) |E1| ≥ n − 1, we obtain
the following universal upper bound on the spectral gap of the SRW on G:

1− ρ2 ≤
2

n

This implies that the convergence time is at least of the order of n. Even if
the SRW on the two graphs G1 and G2 converge in a much faster way, the
interconnected graph can not beat the bound due to the presence of the bottleneck
created in the interconnected graph. An extreme case is represented by the case
when G1 and G2 are two copies of the complete graph over n vertices. In that
case things are even worse since

Φ(S) =
1

|E1|+ 1
=

1

n2 + 1

so that the convergence time is of the order of n2 in spite of the fact that in
the two complete graphs convergence would have happened in finite time! This
final example is known as the barbell graph and will be considered again in later
chapters.
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A sort of lower bound involving the bottleneck ratio can also be obtained
(see [33, Theorem 13.14].)

Proposition 6. Let µ2 be the second largest eigenvalue of a time-reversible
matrix P , and let Φ∗ be the bottleneck ratio of P . Then,

1− µ2 ≥
Φ∗

2

2
. (12)

Apparently, this seems not to be sufficient to establish a lower bound for
the spectral gap since one only knows that the second eigenvalue satisfy the
inequality ρ2 ≥ µ2. However, in many cases it is actually an equality. An
important case is when P is a SRW and we consider the lazy SRW P1/2 =
1/2(I + P ).

Unfortunately, the two bounds (10) and (12) do not close: in all cases when
the bottleneck ratio goes to 0 as α(N) (where N is the number of nodes), the
two estimations yield bounds on the convergence time of type C1α(N)−1 <
τ < C2α(N)−2, and could not conclude, by this road, the exact scaling of the
convergence time.

An important application of Proposition 6 is for constructing examples of
high performance consensus dynamics. A sequence of symmetric graphs GN over

N nodes, is called an expander graph if the corresponding bottleneck ratios Φ
(N)
∗

are bounded away from 0. Thanks to Proposition 6, SRW on expander graphs
have the spectral gap bounded away from 0 and therefore their convergence time
turns out to be constant in N . One might guess that such expander graphs
guarantee such good properties at the price of increasing the degree of the
nodes, but, surprisingly enough, there are examples of expander graphs where
the degree of all nodes remain bounded with respect to the size N . Construction
of such graphs is typically done by random techniques [3] and their analysis is
beyond the scope of this paper.

Many other useful techniques to bound the spectral gap of time reversible
matrices, for instance through comparing arguments with respect to some other
time reversible matrix, can be found in [33].

5 Random models

The dynamical systems studied so far are based on the assumption that units
share a common clock and update their state in a synchronous fashion. This is of
course not a feasible assumption in many contexts, if we reflect on the fact that
the problem of synchronizing clocks in a network of sensors [9] is of (at least)
comparable complexity than implementing a consensus algorithm. Moreover, in
the opinion dynamics modelling, it is not realistic to assume that all interactions
happen at the same time: agents are embedded in a physical continuous time
and interactions can be imagined to take place at different times, for instance
in a pairwise fashion.

This motivates the study of different asynchronous models where typically
some random process determines the possible interactions among the agents. Of
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course, randomness is not strictly necessary in the definition of asynchronous
models, but is, nevertheless, a useful and, in many cases, realistic assumption.
Randomness is akin to a nice mathematical analysis and this is the reason why
such models have obtained such a great popularity in the last ten years [4, 19].

5.1 Random consensus dynamics

We now describe a basic model for random consensus dynamics subsuming most
of the models of interest in the applications. Given a set of nodes V of finite
cardinality N , we consider a sequence of random independent and identically
distributed stochastic matrices P (t) ∈ RV×V . They induce the random dynam-
ics

x(t+ 1) = P (t)x(t) t ∈ N . (13)

In these notes we think of x(0) ∈ RVas a fixed (not random) initial condition.
x(t) is thus a stochastic process where all the randomness is in the choice of the
matrices P (t)’s.

We now present some basic examples

Example 5 (The symmetric gossip model). This is probably the most famous
random consensus model. Fix a real number q ∈ (0, 1) and a symmetric graph
G = (V, E). At every time instant t an edge (u, v) ∈ E is activated with uniform
probability |E|−1 and nodes u and v exchange their states and produce a new
state according to the equations

xu(t+ 1) = (1− q)xu(t) + qxv(t)

xv(t+ 1) = qxu(t) + (1− q)xv(t)

The states of the other units remain unchanged. More formally for every (u, v) ∈
E, we let

Ruv = I − q(eu − ev)(eu − ev)∗ ,

(we recall that eu is the vector with 1 in position u and all other components
equal to 0). Then, P (t) is concentrated on these matrices and

P[P (t) = Ruv] = |E|−1

Example 6 (The asymmetric-gossip model). In this case we start from a real
number q ∈ (0, 1) and a fixed graph G = (V, E). At every time instant t an agent
u is activated with uniform probability |V|−1 and, subsequently, an out neighbor
v of u is chosen with probability 1/d+

u (d+
u is the out-degree of node u, namely

the number of outgoing edges from u). Then, node v sends its state to u and u
produces a new state according to the equation

xu(t+ 1) = (1− q)xu(t) + qxv(t)

Formally, define, for every (u, v) ∈ E, Ruv = I − qeu(eu − ev)∗ and let

P[P (t) = Ruv] = |V|−1(d+
v )−1

13



This model can also be considered when the parameter q = 1. In this case agent
u simply copies the state of agent v: it is called the ’voter model’ in opinion
dynamics.

We may as well consider non-gossip models:

Example 7 (The broadcasting model). We start from any graph G = (V, E).
We assume that at every time instant node u is chosen with uniform probability
|V|−1. This node u then broadcasts its state to all its out-neighbors which then
average their states with the received state. In this case P (t) concentrates on
the N matrices

Ru = I − q
∑
v∈N+

u

(eve
∗
v − eue∗v)

and we let P[P (t) = Ru] = |V|−1. Further considerations on this model can be
found in [24, 22]

Finally, randomness can also be due environmental effects. In the next
example we describe some possible models for such situations.

Example 8 (The packet drop model). We start from a fixed stochastic matrix
P such that Puu > 0 for all u and such that the graph GP is strongly connected.
Then we know that the algorithm

x(t+ 1) = Px(t) (14)

yields consensus. In some situations there might be data loss in the communica-
tion between nodes. Here we model this by assuming that the data transmission
over an edge (v, u) of G from the node v to the node u can occur with some
probability p. More precisely, consider the family of independent binary random
variables Luv(t), t ∈ N, u, v = 1, . . . , N , u 6= v, such that

P[Luv(t) = 1] = p and P[Luv(t) = 0] = 1− p if u 6= v

We emphasize the fact that independence is assumed among all Luv(t) as u, v
and t vary. Consider the random matrix Ã(t) defined by Ãuv(t) = (AG)uvLuv(t).
Clearly, Ã(t) is the adjacency matrix of a random graph G̃(t) obtained from G by
deleting the edge (u, v) when Luv(t) = 0. In general our initial matrix P is not
going to be compatible with the graph Ḡ(t) and, as a consequence, the consensus
algorithm has to be modified to consider this fact. There are several ways to
adapt P in order to take into account the missing data. One possibility is to
consider

xi(t+ 1) =
(
Puu +

∑N
v=1
v 6=u

Puv(1− Luv(t))
)
xu(t)

+
∑N

v=1
v 6=u

PuvLuv(t)xv(t)

Roughly speaking, according to this method the weights Puv are kept constant if
u 6= v while they are varied if u = v in order to keep the stochasticity of P (t).
More details and different models can be found in [20].
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We now comments on the examples introduced above

Remark: Notice how, in spite of our original intention to de-synchronize the
dynamics, in the proposed setting and in all the examples above we have main-
tained a global integer time. Moreover activation of nodes or edges is governed
by a random but centralized mechanism. These apparently strong drawbacks
are actually not really crucial. Indeed, one could consider the scenario where
nodes or edges are equipped with clocks whose ticking are modeled by inde-
pendent Poisson random variables. As simultaneous clicking is a zero measure
event, one can easily get back to the proposed model by interpreting time as a
logical one which simply counts the global number of clock ticks in the network.
Notice, moreover, that the assumption of uniformity in the sample probability
can be generalized to different probabilistic models.

5.2 Probabilistic consensus

As the above example very well illustrate the requirement that the dynamics (13)
always converges to a consensus would be too strong and typically not verified
(e.g. in the symmetric gossip model when the same edge is sampled at every
instant of time). More realistic is to require that x(t) converges to a consensus
with probability one. In order to investigate this situation, it is convenient
to consider the mean dynamics e(t + 1) = P̄ e(t) where P̄ := E[P (t)] is the
mean stochastic matrix and where e(t) = E[x(t)]. Clearly, if x(t) converges to
a consensus with probability one, then, being bounded, also e(t) will converge
to a consensus. Therefore a natural (indeed necessary if GP̄ is symmetric )
assumption to be made for x(t) to achieve consensus with probability one is
P̄ to be primitive. While this is not sufficient to guarantee convergence of the
process, a slightly stronger assumption does, as is exactly stated in the following
result [19]:

Theorem 7. Consider the dynamics (13). Assume that

1. GP is strongly connected,

2. for any u ∈ V we have that P (t)uu > 0 almost surely.

Then, x(t) achieves consensus with probability one.

It is immediate to check that all the examples presented above satisfy the
assumptions of Theorem 7 as long as the underlying graph is strongly connected.
Regarding Example 6 on the asymmetric gossip model when q = 1 (the voter
model), notice instead that assumption 2. in Theorem 7 is not verified. For this
model we can indeed prove convergence to a consensus but with a completely
different argument. The basic fact is that in the voter model, state of the
agents at every time belong to a fixed finite set determined by the initial states;
evolution can thus be modeled as a finite Markov chain possessing absorbing
states (corresponding to all agents sharing the same state). Since from every
possible initial configuration state, if the graph is connected, there is a possible
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path leading to an absorbing states, classical results of Markov chains imply that
consensus will be reached in finite time with probability one. Further details on
the voter model and related reference can be found in [12]

There are two basic issues which are not addressed by previous result. First,
the consensus point is in principle a random variable in general not directly
computable. Can we compute its mean and its variance? Second, can we
characterize the speed of convergence to consensus as in the deterministic case?

Let us start with the first point. Put Q(t) = P (t)P (t− 1) · · ·P (0). The fact
that, for t → +∞, Q(t)x(0) → x̄1 with probability 1, easily implies that, for
t→ +∞, Q(t)→ 1ρ∗ with probability 1 where ρ ∈ RV is necessarily a random
probability vector. We thus have that the consensus point can be written as
x̄ = ρ∗x(0). The mean E[ρ] can immediate be characterized by the mean matrix
P̄ : indeed E[ρ] is the invariant probability of P̄ . In order to analyze the second
moment of ρ, is necessary to pass from the mean dynamics governed by P̄ to
the covariance dynamics of the process. Notice that we can write

E[x∗(t)x(t)] = x∗(0)∆(t)x(0)

where ∆(t) := E[Q(t − 1)∗Q(t − 1)] if t ≥ 1 and where ∆(0) := I. A simple
recursive argument shows that

∆(t+ 1) = E[P (0)∗∆(t)P (0)]

(we are using the fact that the P (t)’s are identically distributed). This shows
that ∆(t) is the evolution of a linear dynamical system which can be written in
the form

∆(t+ 1) = L(∆(t))

where L : RN×N → RN×N is given by

L(M) = E[P (0)∗MP (0)]

If we consider on RN×N the classical inner product < A,B >= Trace(B∗A), we
easily obtain that the adjoint operator L∗ is given by L∗(M) = E[P (0)MP (0)∗]
which turns out to be a stochastic operator (L∗(11∗) = 11∗). On the other
hand, it holds

Lt(M) = E[Q(t− 1)∗MQ(t− 1)]→ E[ρ1∗M1ρ∗] = E[ρρ∗]1∗M1

This implies that L∗ is primitive and the unique invariant probability is given
by E[ρρ∗]. Therefore the first two moments of the random invariant proba-
bility ρ can be characterized in terms of the invariant probabilities of the two
deterministic operators P̄ and L.

The operator L also plays a crucial role in the analysis of the speed of
convergence to consensus. Indeed, if we consider the following mean square
distance from the consensus

d(t) = E||x(t)−N−111∗x(t)||2 ,
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it is immediate to check that d(t) = x(0)∗Lt(Ω)x(0) where Ω = I − N−111∗.
In [19] it is shown that the rate of convergence to 0 of d(t) is dictated by the
spectral radius of the operator L when restricted to the space of symmetric
matrices M such that M1 = 0. A useful upper bound can be obtained by the
following argument.

Notice that

x∗E[P ∗(0)ΩP (0)]x = E[x∗ΩP ∗(0)ΩP (0)Ωx]
≤ ||E[P ∗(0)ΩP (0)]||x∗Ωx

This shows that ||L(Ω)||Ω ≥ L(Ω) (where order relation is the one of positive
definitiveness) Iterating this inequality we find that

Lt(Ω) ≤ ||L(Ω)||tΩ

This yields the bound
d(t) ≤ γt||Ωx(0)||2 (15)

where γ is the spectral radius of the matrix L(Ω).
In general the analysis of specific examples need a considerable amount of

computation and efforts. Below we shortly present a couple of examples and we
refer to [4, 19, 20, 22, 18, 25] for a detailed analysis of these and of many more
examples. Related models are also considered in [6, 10]

Example 9 (Performance of the symmetric gossip). In the case of the symmet-
ric gossip algorithm, all matrices P (t) are indeed symmetric. As a consequence
ρ = N−11: consensus point is always (deterministically) the arithmetic mean
of the initial states. Regarding the rate of convergence, notice that in this case

L(Ω) = E[P ∗(t)ΩP (t)] = E[P 2(t)]− 1

N
11∗

In the special case where q = 1/2, we have that P 2(t) = P (t). Therefore γ
coincides with the send eigenvalue of the matrix P̄ . It can be shown that the
bound (15) is tight in this case [4, 19]. In many examples, the computation of
the second eigenvalue of P̄ is an affordable problem. If we further specialize to
the case when G is the complete graph, we obtain

P̄ =
1

N2

∑
u,v

[
I − 1

2
(eu − ev)(eu − ev)∗

]
=

(
1− 1

N

)
I +

1

N
N−111∗

Therefore, for the complete graph, γ = 1−N−1.This implies that the convergence
time (in mean square sense) scales as N . This deterioration of performance with
respect to the synchronous case where the convergence time is constant, is only
due to the chosen time scale: in one unit of time here only two nodes update
their value, while, in the synchronous case, all nodes update. If we were using
the Poisson clock model in continuous time where each edge is activated at rate
1, then this discrepancy would disappear.
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Example 10 (Performance of the asymmetric gossip). We assume the under-
lying graph G to be symmetric. Notice that the matrices P (t) are in any case
no longer symmetric. The mean stochastic matrix is given by

P̄ =
1

N2

∑
u,v

(I − q(eu(eu − ev)∗) = I − q

N2
DAG1 +

q

N2
AG

which is symmetric. This implies that the random probability vector ρ deter-
mining the consensus point has its mean E[ρ] = N−11 even if ρ will not in
general be equal to the uniform probability. Indeed a lengthy, but not difficult,
computation shows that the second moment is given by

E[ρρ∗] =
1

qN + (1− q)N2
[qI + (1− q)11∗]

Remarkably, the second moment does not depend on the topology of the under-
lying graph. From this, we can for instance compute the mean displacement of
the consensus point from the arithmetic mean:

E|ρ∗x(0)−N−11∗x(0)|2 = x(0)∗[E[ρρ∗]−N−211∗]x(0) =
q

qN + (1− q)N2
||Ωx(0)||2

Notice how the mean displacement goes to 0 as N → +∞. This says that, in
spite of the fact that the matrices P (t) are not doubly stochastic, the consensus
point concentrate around the arithmetic mean in large scale graphs. For more
details on this example including detailed analysis of the speed of convergence,
we refer the reader to [18].

6 Stubborn agents and electrical networks

6.1 Consensus dynamics with stubborn agents

In this chapter, we investigate consensus dynamics models where some of the
agents do not modify their own state (stubborn agents). These models are of
interest in socio-economic models [2] and also in vehicle rendezvous problems
where certain vehicles want to remain fixed and make the other gather around
them [31]

Consider a symmetric connected graph G = (V, E). We assume a splitting
V = S ∪ R with the understanding that agents in S are stubborn agents not
changing their state while those in R are regular agents whose state modifies in
time according to the dynamics described below. Let P ∈ RV×V be a stochastic
matrix such that, for u 6= v

Puv = 0 ⇔ {u, v} 6∈ E or i ∈ S (16)

We will say that P is adapted to the pair (G,S) when it satisfies the constraint
above. Dynamics of opinions is described by the relation x(t + 1) = Px(t). If
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we order elements in V in such a way that elements in R come first, the matrix
P will exhibit the block structure:

P =

[
Q11 Q12

0 I

]
(17)

Splitting accordingly the state vector x(t) = (xR(t), xS(t)) ∈ RV we thus have
dynamics

xR(t+ 1) = Q11xR(t) +Q12xS(t)
xS(t+ 1) = xS(t)

(18)

Notice that Q11 is a sub stochastic matrix, namely all row sums are ≤ 1. More-
over, thanks to the adaptivity assumption (16), there is at least one row whose
sum is strictly less than one (the row corresponding to a regular agent connected
to a stubborn one). Using the connectivity of the graph, this easily implies that
there exists t > 0 such that (Q11)t has the property that all its rows have sum
strictly less than one. This immediately yields that the matrix is asymptotically
stable (e.g. spectral radius < 1). Henceforth, xR(t)→ xR(∞) for t→ +∞ with
the limit opinions satisfying the relation

xR(∞) = Q11xR(∞) +Q12xS(0) (19)

which is equivalent to

xR(∞) = (I −Q11)−1Q12xS(0) (20)

Put Ξ := (I−Q11)−1Q12 and notice that Ξus =
∑
n[(Q11)nQ12]us is always non

negative and is not equal to 0 if and only if there exists a path in G connecting
the regular agent u to the stubborn agent s and not touching other stubborn
agents. Moreover, the fact that P is stochastic easily implies that

∑
s Ξus = 1 for

all u ∈ R: asymptotic opinions of regular agents are thus convex combinations
of the opinions of stubborn agents. The above analysis shows, in particular,
that if all stubborn agents are in the same state x (for instance this happens
if there is just one stubborn agent), then, consensus is reached by all agents in
the point x. However, typically, consensus is not reached in such a system: we
will discuss few examples later on.

6.2 Electrical Networks

In order to deepen our study of the asymptotic states of a consensus dynamics
with stubborn agents, it is convenient to make use of the so called electrical
network interpretation of a graph [17, 33]: this leads to the appealing inter-
pretation of the asymptotic states as voltages when the state of the stubborn
agents are fixed voltage. Below we describe this interpretation in some detail
closely following the presentation in [34].

Given a symmetric strongly connected graph G = (V, E) , denote by Ē the set
of undirected edges of G: namely Ē consists of those subsets {u, v} of cardinality
2 such that (u, v) ∈ E (possible self-loops present in G are disregarded in the
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construction of Ē). An incidence matrix on G is any matrix B ∈ {0,+1,−1}Ē×V
such that B1 = 0 and Beu 6= 0 iff u ∈ e. It is immediate to see that given
e = {u, v}, the e-th row of B has all zeroes except Beu and Bev: necessarily one
of them will be +1 and the other one −1 and this will be interpreted as choosing
a direction in e from the node corresponding to +1 to the one corresponding
to −1. Consider now a symmetric conductance matrix C ∈ RV×V such that
Cuv ≥ 0 for every u, v ∈ V and Cuv > 0 iff {u, v} ∈ E and define DC ∈ RĒ×Ē to
be the diagonal matrix such that (DC)ee = Cuv = Cvu if e = {u, v}.

Interpret now G as an electrical circuit where an edge {u, v} has electrical
conductance Cuv = Cvu > 0 (and thus resistance Ruv = C−1

uv ) while Cuv = 0
for all pairs (u, v) 6∈ E . The pair (G, C) will be called an electrical network from
now on. Consider moreover a vector η ∈ RV such that η∗1 = 0: we interpret ηv
as the input current injected at node v (if negative being an outgoing current).
Given C and η, we can define the voltage W ∈ RV and the current flow Φ ∈ RĒ
in such a way that the usual Kirchoff and Ohm’s law are satisfied on the network.
Compactly, they can be expressed as{

B∗Φ = η
DCBW = Φ

(21)

(Notice that φe is the current flowing on edge e and sign is positive iff flow is
along the conventional direction individuated by B on edge e). Coupling the
two equations we obtain the following equation for W :

B∗DCBW = η (22)

A straightforward calculation shows that B∗DCB = DC1(I − D−1
C1C). Notice

that Q = D−1
C1C is the time-reversible Markov chain associated with C and

that the part in parenthesis is thus the so called Laplacian of Q which we have
previously denoted L(Q). Relation (22) can thus be rewritten as

L(Q)W = D−1
C1η (23)

It follows from Proposition 3 that, since G is connected, L(Q) has rank N − 1
with L(Q)1 = 0. This shows that (23) determines W up to translations.

It is often possible to replace an electrical network with a simplified one
without changing certain quantities of interest. An useful operation is gluing:
if we merge vertices having the same voltage into a single one, while keeping all
voltages and currents unchanged, because current never flows between vertices
with the same voltage. Another useful operation is replacing a portion of the
electrical network connecting two nodes u, v by an equivalent resistance, a single
resistance denoted as Reffu,v which keeps the difference of voltage W (u)−W (v)
unchanged. There are two basic laws to compute equivalent resistances. One is
the so called Series law: if u ∈ V is a node of degree 2 with neighbors v and w
and ηu = 0, then edges {u, v} and {u,w} can be replaced by a single edge {v, w}
of resistance Reffv,w = Ruv + Ruw. All voltages and currents in the new network
remain the same as in the original one, while the current that flows from v to
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w equals Φ{v,w} = Φ{u,v} = Φ{u,w} and the voltage difference between v and w
is unchanged. The other one is the Parallel law: suppose edges e1 and e2, with
conductances c1 and c2, respectively, share vertices u and v as endpoints. Then
both edges can be replaced with a single edge e of conductance c1 + c2 without
affecting the rest of the network. All voltages and currents in Ē\{e1, e2} are
unchanged and the current Φe equals Φe1 +Φe2 . In terms of resistances we have
a single edge with equivalent resistance of (c1 + c2)−1.

6.3 Opinions as voltages

We are now ready to state the relationship between electrical networks and
the consensus dynamics with stubborn agents. Consider a symmetric strongly
connected graph G = (V, E), a subset of stubborn agents S ⊆ V, and a conduc-
tance matrix C on G. Assume that the corresponding time-reversible matrix
Q = D−1

C1C is primitive. Let P be the stochastic matrix coinciding with Q on
regular agents and such that Pss = 1 for all s ∈ S. Notice that relation (19)
can be written as

L(Q)

(
xR(∞)
xS(0)

)
=

(
0
θ

)
(24)

for some vector θ ∈ RS . Confronting with (23), this implies that xR(∞) can
be interpreted, in the electrical network (G, C), as the vector of voltages of the
regular agents when stubborn agents have fixed voltage xS(0) or, equivalently,
when input currents η = DC1θ are applied to the stubborn agents. Notice
that the translation ambiguity of the voltages implicit in relation (23), is here
completely solved by the fact that stubborn agents have fixed voltage.

Thanks to the electrical analogy we can compute the asymptotic opinion of
the agents by computing the voltages in the graph seen as an electrical network.
Consider the following simple example.

Example 11 (Stubborn agents in a Line graph). Consider the line graph
LN = (V, E) where V = {1, 2, . . . , N} and where E = {(u, u+ 1), (u+ 1, u) |u =
1, . . . , N − 1}. Assume that S = {1, N} and R = V \S. Consider the stochastic
matrix P corresponding to the SRW on regular nodes in R, while P11 = PNN =
1. Following the considerations above, it follows that the asymptotic states of the
regular agents xR(∞) correspond to the voltages of the regular nodes when nodes
1 and N are kept at fixed voltage, respectively, xS1 (0) and xSN (0) in the electrical
network (LN , ALN ) (all edges have conductance equal to 1). By repeated appli-
cation of the Series law, the line can be replaced by a single edge connecting 1
and N having equivalent resistance N−1. Therefore, by Ohm’s law, the current
flowing along the replaced edge from 1 to N (and thus, by Kirchoff’s law, along
all edges in the original network) is equal to Φ = (N − 1)−1[xSN (0)− xS1 (0)]. If
we now fix an arbitrary node v ∈ V and applying again the same arguments in
the part of graph from 1 to v, we obtain that the voltage at v, xRv (∞) satisfies
the relation xRv (∞)− xS1 (0) = Φ(v − 1). We thus obtain

xRv (∞) = xS1 (0) +
v − 1

N − 1
[xSN (0)− xS1 (0)] .
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